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A method to calculate the flow of a weakly compressible gas on a multiprocessor computer system using the
(α − β) iteration algorithm has been proposed. The problem of gas flow in a cavity with a moving cover has
been considered as an example. The flow is described using Navier–Stokes equations in natural variables;
MAC-type spaced grids are employed. Calculations with the use of a monoprocessor version of the (α − β) al-
gorithm and using its parallel implementation for the case of four processors have been carried out; the issue
of the efficiency of multisequencing has been studied. Certain aspects of organization of remote access to the
multiprocessor system have been discussed.

Weakly compressible gas flows provide the basis for technological processes in many industrial installations;
description of the processes of heat and mass transfer is based on studying these flows. A mathematical model of vis-
cous gas flow for small Mach numbers can be constructed on the basis of the model of an incompressible viscous
fluid which is based on Navier–Stokes equations. Numerous methods, both explicit and implicit, have been developed
at present to solve these equations. The use of implicit difference schemes is more preferable since they are much
more stable as a rule. However, the employment of them involves a number of difficulties associated with solution of
the corresponding systems of grid equations. In such a situation, in selecting the already existing method or developing
a new one, particular emphasis must be placed upon the following aspect.

Very often, especially in problems with the processes of heat and mass transfer, detailed modeling requires a
narrow grid with a large number of subdivision points, which significantly increases the volume of computations. This
circumstance explains why the time of counting even on quite efficient computers is very long and leads to the fact
that narrow grids turn out to be difficult to use. In our opinion, the way out is the employment of parallel computer
systems with distributed memory, which enables one to substantially decrease the time required to solve the problem.
In light of what has been said above, one must give preference to the algorithms of solution of Navier–Stokes equa-
tions which make it possible to implement them on parallel computers.

This work seeks to discuss certain issues concerning software of parallel computers and their application to
solution of problems of the dynamics of a weakly compressible gas. To solve Navier–Stokes equations in natural vari-
ables on a MAC-type spaced grid [1] we employ the scheme of splitting [2] which inherits the properties of the initial
differential problem. The equations obtained are solved using the (α − β) iteration algorithm, which allows a rather
simple parallel implementation. The calculations whose results are presented in the work have been carried out at the
Institute of Mathematical Modeling of the Russian Academy of Sciences on a Parsytec multiprocessor system using
connection via the Internet, and part of the work is devoted to a discussion of the issues of organization of remote
access.

Description of the (α−β) Iteration Algorithm. A distinctive feature of the algorithm employed on a multi-
processor computer is the possibility of its simple parallel implementation. We selected the (α − β) iteration algorithm
[3, 4] that processes this property, which enables one to successfully apply it to solution of different problems [5]. Al-
though its convergence has not been proved theoretically, the practice shows that it converges quite rapidly [6]. Let us
consider a two-dimensional rectangular region on which the grid Ω = 



x: x = (xi, xj)




, 0 ≤ i ≤ Ni, 0 ≤ j ≤ Nj is prescribed.

At the internal nodes of this grid, we consider the difference elliptical equation
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Ai,jUi−1,j + Bi,jUi+1,j − Ci,jUi,j + Ai,j

___
Ui,j−1 + Bi,j

___
Ui,j+1 = − Fi,j ,   0 < i < Ni ,   0 < j < Ni .

(1)

Boundary conditions are written in the following form:

U0,j = ϕj
1
U1,j + ξj

1
 ,   UNi,j

 = ϕj
3
UNi−1,j + ξj

3
 ,   Ui,0 = ϕi

2
Ui,1 + ξi

2
 ,   Ui,Nj

 = ϕi
4
Ui,Nj−1 + ξi

4
 . (2)

It is assumed that the solution satisfies the conditions 

Ui,j = αi+1,jUi+1,j + βi+1,j ,   Ui,j = γi−1,jUi−1,j + δi−1,j ,   Ui,j = αi,j+1

_____
Ui,j+1 + βi,j+1

_____
 ,

Ui,j = γi,j−1

____
Ui,j−1 + δi,j−1

____
 . (3)

By employing these assumptions and Eq. (1) we obtain a system of eight equations relative to the coefficients α, γ, α
__

,
γ
_
, β, δ, β

__
, and δ

_
; the system of equations for α, γ, α

__
, and γ

_
 is noninteracting (independent); therefore, the iteration

process is constructed in the following manner: first we compute α, γ, α
__

, and γ
_
 (this cycle of calculations will be

called the α process) and then we analogously construct the β process in which the linear equations for β, δ, β
__

, and
δ
_
 are involved. Thereafter from conditions (2) and (3) we determine the grid function

Ui,Nj
 = 

ϕi
4
 βi,Nj

____
 + ξi

4

1 − ϕi
4
 αi,Nj

____  ,   i = Ni − 1, ... , 1 ,   Ui,j = αi+1,j

_____
 Ui+1,j + βi+1,j

_____
 ,   i = Ni − 1, ... , 1 ,   j = Nj − 1, ... , 0 .

The values of the functions U0,j and UNi,j are easy to determine using conditions (2).
Let us consider the α process. First one constructs upward iterations: on one layer with respect the variable j,

the coefficients α are computed from left to right (from the left-hand boundary to the right-hand boundary) and then
the coefficients γ are computed from the right-hand boundary to the left-hand one. Thereafter the coefficients α

__
 on the

next layer with respect to j are found using them. The procedure is repeated for all j = 1, ..., Nj − 1:

αi+1,j
(s+1 ⁄ 2)

 = 
Bi,j

Ci,j − αi,j
(s+1 ⁄ 2)

 Ai,j − αi,j

___
 (s−1 ⁄ 2)

 Ai,j

___
 − γi,j

___
 (s)

 Bi,j

___ ,   i = 1, ... , Ni − 1 ;

γi−1,j
(s+1 ⁄ 2)

 = 
Ai,j

Ci,j − γi,j
(s+1 ⁄ 2)

 Bi,j − αi,j

___
 (s−1 ⁄ 2)

 Ai,j

___
 − γi,j

___
 (s)

 Bi,j

___ ,   i = Ni − 1 , ... , 1 ;

αi,j+1

_____
 (s+1 ⁄ 2)

 = 
Bi,j

___

Ci,j − αi,j

___
 (s+1 ⁄ 2)

 Ai,j

___
 − αi,j

(s+1 ⁄ 2)
 Ai,j − γi,j

 (s+1 ⁄ 2)
 Bi,j

 ,   i = 1 , ... , Ni − 1 .

Thereafter one constructs downward iterations: for all j = Nj − 1, ..., 1, on one j layer, new coefficients α are computed
from left to right, then new coefficients γ are computed from right to left, and finally the coefficients γ

_
 are computed

on the previous j layer:

αi+1,j
(s+1)

 = 
Bi,j

Ci,j − αi,j
(s+1)

 Ai,j − αi,j

___
 (s+1 ⁄ 2)

 Ai,j

___
 − γi,j

___
 (s)

 Bi,j

___ ,   i = 1 , ... , Ni − 1 ;

γi−1,j
(s+1)

 = 
Ai,j

Ci,j − γi,j
(s+1)

 Bi,j − αi,j

___
 (s+1 ⁄ 2)

 Ai,j

___
 − γi,j

___
 (s)

 Bi,j

___ ,   i = Ni − 1 , ... , 1 ;
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γi,j−1

____
 (s+1)

 = 
Ai,j

___

Ci,j − γi,j

___
 (s+1)

 Bi,j

___
 − αi,j

(s+1)
 Ai,j − γi,j

(s+1)
 Bi,j

 ,   i = 1 , ... , Ni − 1 .

The upward and downward iterations are repeated until the required accuracy is attained (for example,

∆1 ≤ 10−10), where ∆1 = √∑ (γi,j

___
(s+1) − γi,j

___
(s))2 h1h2  (h1 and h2 are the grid steps with respect to the variables x1 and x2

respectively). When the β process is implemented, after each β iteration one computes the norm

∆2 = √Σ (Ai,jUi−1,j + Bi,jUi+1,j − Ci,jUi,j + Ai,j

___
Ui,j−1 + Bi,j

___
Ui,j+1 + Fi,j)

2
 h1h2

 .

On attainment of a certain accuracy (for example, ∆2 ≤ 10−4), the process is considered to be completed.
Parallel Implementation of the (α − β) Algorithm. Several methods of multisequencing of the (α − β) algo-

rithm exist [6] but they all are closely related to the principle of geometric parallelism. The calculation region is sub-
divided into a certain number of subregions. In this work, consideration is given to the subdivision of the region into
four subregions, as is shown in Fig. 1. Counting in such a region is organized as follows. Let us consider the α process.

Upward Iterations. S t a g e  1. In regions 1 and 2, counting occurs from the lower boundary with respect
to j, the coefficients α are counted from the left-hand boundary with respect to i to the right-hand boundary, while in
region 2 the coefficients γ are counted from the right-hand boundary to the left-hand one. Simultaneously, counting
from the upper boundary with respect to j occurs in regions 3 and 4; in region 3, the coefficients α are counted from
the left-hand boundary with respect to i to the right-hand boundary, while in region 4 the coefficients γ are counted
from the right-hand boundary with respect to i to the left-hand one. At the boundary N1, we have the exchange: the
coefficients γ are transferred to regions 1 and 3 and the coefficients α are transferred to regions 2 and 4.

S t a g e  2. Counting occurs from the lower boundary with respect to j in regions 1 and 2 and from the
upper boundary with respect to j in regions 3 and 4; in regions 1 and 3, the values of γ are computed from the right-
hand boundary to the left-hand one (on the same layer with respect to j, as at stage 1), while in regions 2 and 4 the
values of α are computed from the left-hand boundary to the right-hand one.

S t a g e  3. One computes α
__

 on the next layer with respect to j in regions 1 and 2 and γ
_
 on the previous

layer with respect for j in regions 3 and 4.
Next, stages 1–3 are repeated until the boundary N2 is attained at stage 3. Then at this boundary we have the

exchange: computed γ
_
 are transferred to regions 1 and 2 and computed α

__
 are transferred to regions 3 and 4.

Downward iterations are carried out analogously.
Example of Calculation. Formulation of the Differential Problem. Let us consider a calculation of the un-

steady flow of a weakly compressible gas under the action of a spatially distributed force in a cavity of rectangular
cross section with a moving upper cover. The gas is weakly compressible if the relative density change is small,
which occurs for a Mach number much less than unity or, what is the same, if the flow velocity is small as compared
to the velocity of sound. As is well known, in this case gas flows can approximately be considered as incompressible;

Fig. 1. Subdivision of the calculation region into subregions.

549



therefore, the model of incompressible liquid flow presented in [2, 7] in detail has been used as the basis for descrip-
tion of the motion of a gas. The additive scheme of splitting with respect to the time coordinate is employed in this
method. The motion of a weakly compressible gas in the region Ω = 



x: x = (x1, x2)



, 0 < xα < lα, α = 1, 2, is described

by the Navier–Stokes equation (in dimensionless form) and the equation of incompressibility of a medium

∂v
∂t

 + C (v) v + grad p − ν∆v = f (x, t) ,   x 2 Ω1 ,   0 < t < Θ ,
(4)

div v = 0 ,   x 2 Ω1 ,   0 < t < Θ , (5)

where ν = 1 ⁄ Re and ∆ B div grad;

C (v) =  ∑ 

α=1

2

 Cα (να) ;   Cα (να) u = 
1
2

 




∂
∂xα

 (να u) + να 
∂u
∂xα




 ;   α = 1, 2 .

Equations (4) and (5) are supplemented with the initial conditions and the boundary conditions (for example, sticking
and nonflow conditions):

v (x, 0) = v0 (x) ,   x 2 Ω1 ;   v (x, t) = 0 ,   x 2 ∂Ω1 ,    0 < t ≤ Θ .

To unambiguously determine the pressure one must employ an additional condition, for example,

∫ 

Ω1

p(x, t) dx = 0, 0 < t ≤Θ. We solved a specific problem in which the following conditions were satisfied: the region

was a unit square (lα = 1, α = 1, 2), the force acting on the gas was absent, the initial conditions were homogeneous,

and the boundary conditions were inhomogeneous:

v (x, t) = 




(0, 0) ,   x2 ≠ 1 ,

(1, 0) ,   x2 = 1 ,
   x 2 ∂Ω1 ,   0 < t ≤ Θ .

Numerical Implementation on Spaced Grids. In the calculations, we employed the MAC-type space grids for
the pressure and the velocity components [1] (i.e., grids analogous to those employed in the known MAC method)
which are given in Fig. 2; the pressure refers to the center of a cell, while the velocity components refer to its sides.
To solve the problem formulated we used a purely implicit factorized scheme of splitting [8]. Omitting intermediate
calculations (they are presented in [2, 7] in detail), we give just the description of the algorithm which consists of
three stages.

Fig. 2. Spaced grids of the MAC type.
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S t a g e  1. First from the equation

w
n+1 ⁄ 2 − w

n

τ
 + C (wn)n+1 ⁄ 2 + D w

n+1 ⁄ 2 + P w
n
 = f 

n
 ,

(6)

where the difference operators P, D, and C(w) are determined as follows:

C (w) =  ∑ 

α=1

2

 Cα (wα) ,   Cα (wα) u = 
1
2

 

(wα u)x°α

 + wα ux°α


 ,   α = 1, 2 , P w = gradh p ,   D w = − ν ∆w ,

we calculate the intermediate velocity wn+1 ⁄ 2.
S t a g e   2. Thereafter we determine the pressure on the basis of solution of the problem

divh gradh δp
n+1

 = 
1
τ

 divh w
n+1 ⁄ 2 ,

(7)

where the pressure correction is denoted by δpn+1 = pn+1 − pn.
S t a g e   3. We compute the velocity and the pressure on a new time layer from the explicit formulas

w
n+1

 = w
n+1 ⁄ 2 − τ gradh δp

n+1
 ,   p

n+1
 = p

n
 + δp

n+1
 . (8)

The (α − β) algorithm is employed to implement stages 1 and 2. To unambiguously solve Eq. (7) one must employ an

additional condition, for example, fix the value of δpn+1 at one internal point of the grid. Any initial approximation of

p0 can be taken. We should note that for the (α − β) algorithm to be stable it is necessary that the diagonal predomi-
nance [9] hold, since the algorithm is constructed on the basis of the method of runs in two spatial directions. This

always holds for stage 1, but for stage 2 this holds only on condition τ ≤ 
1
ν

 


max(h1, h2)




2
.

Calculation Results. First we considered the solution of problem (6)–(8) using a monoprocessor version of
the (α − β) algorithm. To compare steady-state flows we employed the data of [7]. To obtain more objective re-

sults we used various grids (20×20, 40×40, 80×80, 16×160, and 320×320) and different Reynolds numbers

(Re = 100,  400,  and 1000);  the t ime step was constant  (τ = 0.01) .  The calculat ions were stopped if

max 



max

i,j
  

w1i,j
n+1 − w1i,j

n

τ
, max

i,j
  

w2i,j
n+1 − w2i,j

n

τ




 was less than or equal to 10−5. It was noted that when the steady-state

Fig. 3. Lines of the level of a streamfunction (the number of grid points is
plotted along the axes).
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regime was reached an additional vortex appeared at the lower corner of the cavity. The intensity of mass ex-
change increased with increase in the Reynolds number, although a slight extension of stagnation zones was ob-

served. Figure 3 shows the streamlines for Re = 1000 and an 80×80 grid. At the second stage of calculations, to

solve problem (6)–(8) we employed parallel implementation of the (α − β) algorithm and investigated the efficiency
of multisequencing. Unfortunately, because of the distinctive features of the computer system employed, it seemed
impossible to measure the total time of solution of the problem; therefore, in the calculations we employed the
time of realization of one iteration measured in special conventional units. Below in Table 1 we give the accelera-

tion 



S4 = 

t1
t4




 and efficiency 




E4 = 

S4

4
⋅100%




 of the parallel algorithm for Re = 400 and Re = 1000 respectively. It

is seen that for coarse grids the use of multiprocessor devices gives no gain in the acceleration because of the
comparatively long time of data exchange between the processors, whereas for narrow grids the efficiency of mul-
tisequencing is rather high. In general, we can draw a conclusion on the decrease in the efficiency with decrease
in the number of points per processor (due to both the coarsening of the grid and the increase in the number of
processors).

Carrying Out Computations Using Remote Access. Multiprocessor systems have remained unique until the
present time; therefore, their capabilities could be evaluated by only a few scientists. However in recent times, the
number of researchers who are able to utilize the resources of multiprocessor systems has sharply increased owing to
the growing popularity of global computer networks; in so doing, the topicality of the developments in the field of
multisequencing of computational algorithms has increased. The calculations whose results are presented in this work
were carried out at the Institute of Mathematical Modeling of the Russian Academy of Sciences on a Parsytec CC
multiprocessor computer system under the control of an AIX operating system and a PARIX parallel medium. The
system is incorporated in the local network of the Institute which in turn has access to the global Internet. This pro-
vides good possibilities for their remote use, since the systems can be accessed from any node of the Internet.

The computations were carried out using remote access from Orel with the use of standard facilities offered
by Unix and Windows95 operating systems. The facility telnet is the most important of them for our purposes. Unfor-
tunately, the use of telnet has a number of drawbacks. One drawback is the impossibility of employing modern con-
venient editors for introduction of alterations into the initial text of a program (the integrated user environment is not
incorporated into the PARIX compiler, and in the case of remote access it seemed impossible to employ any window
system developed for Unix). Another drawback is as follows: because of the not very high capacity of the communi-
cation channel and its heavy loading in certain hours, the time of debugging of the program increases severalfold as
compared to direct operation on a personal computer. In certain cases (for example, where it is necessary to revise a
large portion of the initial text), the way out is the use of the facility ftp that enables one to transfer files from one
remote system to another. The necessary file is transferred from a multiprocessor system to a personal computer, ed-
ited in any standard editor, and then transferred back to the multiprocessor system. When ftp is employed the time of
editing of the file decreases but it takes additional time to transfer the file in two directions. Therefore, in the case

TABLE 1. Acceleration and Efficiency of the Parallel Algorithm for Different Re

Grid 20×20 40×40 80×80 160×160 320×320

Re = 400

t1 3.0 54.8 935.9 16426.2 154360.6

t4 14.3 109.4 939.0 8089.8 56118.2

S4 0.21 0.50 1.00 2.03 2.75

E4, % 5.24 12.52 24.92 50.76 68.77

Re = 1000

t1 1.8 43.8 773.7 11123.8 91671.4

t4 12.1 96.2 781.9 6685.5 39218.7

S4 0.15 0.46 0.99 1.66 2.34

E4, % 3.72 11.38 24.74 41.59 58.44
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where a small portion of the program’s text must be corrected it is inexpedient to employ this facility. The conclusion
is as follows: the largest effect in the saving of time is attained in the case of employment of a combined version,
where ftp is employed for a large volume and telnet is employed for a small volume.

The problems arising in the case of employment of multiprocessor systems (in particular, processing and visu-
alization of large amounts of data) are aggravated if the employment of them is implemented using remote access.
Since data files can be huge in size in detailed modeling and the capacity of communication channels is rather low,
one must, where possible, decrease the amount of data transferred from a multiprocessor system to a remote user. Spe-
cially developed algorithms of compression of grid functions different from standard archiving utilities are suitable for
this purpose. Another way-out is the employment of "client–server" technology in which all data are stored in the mul-
tiprocessor system itself, and the user is operating only with visual presentation of the results of his calculations.

CONCLUSIONS

1. The multiprocessor method to solve problems of the dynamics of a weakly compressible gas which em-
ploys splitting by space variables and is based on the principle of geometric parallelism has been proposed and tested.

2. The efficiency of multisequencing has been investigated (it turned out to be rather high).
3. The possibility of extending the range of application of multiprocessor devices using remote access and the

problems involved have been considered.
This work was carried out with financial support from the Russian Foundation for Basic Research (project

00–01–81057 Bel 2000_a).

NOTATION

Ω, two-dimensional grid; x = (xi, xj), points of this grid; i, j, coordinates of the point; Ni and Nj, maximum

value of the coordinates i and j respectively; Ai,j, Bi,j, Ci,j, Ai,j

___
, Bi,j

___
, and Fi,j

___
, coefficients of the elliptical equation;

ϕj
1, ξj

1, ϕj
3, ξj

3, ϕi
2, ξi

2, ϕi
4, and ξi

4, constants involved in the boundary conditions for the elliptical equation; Ui,j, arbi-

trary grid function; αi,j, βi,j, γi,j, δi,j, αi,j

___
, βi,j

___
, γi,j

___
, and δi,j

___
, coefficients of the (α − β) algorithm; αi,j

(s), αi,j
(s+1 ⁄ 2), and

αi,j
(s+1), initial, intermediate, and final values of the coefficient αi,j (the notation for the remaining coefficients of the

(α − β) algorithm is analogous); ∆1 and ∆2, norms employed to check accuracy; h1 and h2, grid steps with respect to

the variables xi and xj respectively; v = (v1, v2) and p, dimensionless time and pressure; C(v), operator of convective

transfer; ∆, Laplace operator; P and D, auxiliary operators; t, time; τ, time step; f(x, t), vector of bulk forces; Ω1,

region consisting of the internal points of the cavity; ∂Ω1, boundary of Ω1; Θ, maximum value of the time; ν, kine-

matic viscosity; Re, Reynolds number; v0(x), initial value of the velocity; wn, pn, and fn, values of the velocity, the

pressure, and the bulk-force vector on the nth time layer; S4 and N4, acceleration and efficiency of the parallel algo-

rithm; t1 and t4, time of computation on one processor and four processors.
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